extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D4)⋊1C22 = D12⋊16D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):1C2^2 | 192,595 |
(C6×D4)⋊2C22 = C42⋊8D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4):2C2^2 | 192,636 |
(C6×D4)⋊3C22 = D12⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):3C2^2 | 192,715 |
(C6×D4)⋊4C22 = D12⋊18D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4):4C2^2 | 192,757 |
(C6×D4)⋊5C22 = S3×C22≀C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | | (C6xD4):5C2^2 | 192,1147 |
(C6×D4)⋊6C22 = C24⋊7D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):6C2^2 | 192,1148 |
(C6×D4)⋊7C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):7C2^2 | 192,1149 |
(C6×D4)⋊8C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):8C2^2 | 192,1150 |
(C6×D4)⋊9C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):9C2^2 | 192,1151 |
(C6×D4)⋊10C22 = S3×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):10C2^2 | 192,1163 |
(C6×D4)⋊11C22 = C4⋊C4⋊21D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):11C2^2 | 192,1165 |
(C6×D4)⋊12C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):12C2^2 | 192,1166 |
(C6×D4)⋊13C22 = D12⋊19D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):13C2^2 | 192,1168 |
(C6×D4)⋊14C22 = D12⋊20D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):14C2^2 | 192,1171 |
(C6×D4)⋊15C22 = C6.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):15C2^2 | 192,1172 |
(C6×D4)⋊16C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):16C2^2 | 192,1179 |
(C6×D4)⋊17C22 = S3×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):17C2^2 | 192,1273 |
(C6×D4)⋊18C22 = C2×S3×D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):18C2^2 | 192,1313 |
(C6×D4)⋊19C22 = C2×D8⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):19C2^2 | 192,1314 |
(C6×D4)⋊20C22 = D8⋊13D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):20C2^2 | 192,1316 |
(C6×D4)⋊21C22 = S3×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4):21C2^2 | 192,1331 |
(C6×D4)⋊22C22 = D8⋊4D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4):22C2^2 | 192,1332 |
(C6×D4)⋊23C22 = D8⋊5D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8+ | (C6xD4):23C2^2 | 192,1333 |
(C6×D4)⋊24C22 = D12.32C23 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8+ | (C6xD4):24C2^2 | 192,1394 |
(C6×D4)⋊25C22 = S3×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4):25C2^2 | 192,1524 |
(C6×D4)⋊26C22 = D6.C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4):26C2^2 | 192,1525 |
(C6×D4)⋊27C22 = C3×C22⋊D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):27C2^2 | 192,880 |
(C6×D4)⋊28C22 = C3×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4):28C2^2 | 192,886 |
(C6×D4)⋊29C22 = C6.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):29C2^2 | 192,1164 |
(C6×D4)⋊30C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):30C2^2 | 192,1169 |
(C6×D4)⋊31C22 = C6.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):31C2^2 | 192,1176 |
(C6×D4)⋊32C22 = C42⋊28D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):32C2^2 | 192,1274 |
(C6×D4)⋊33C22 = D12⋊11D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):33C2^2 | 192,1276 |
(C6×D4)⋊34C22 = C42⋊30D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):34C2^2 | 192,1279 |
(C6×D4)⋊35C22 = C3×C23⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):35C2^2 | 192,1423 |
(C6×D4)⋊36C22 = C3×C22.29C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):36C2^2 | 192,1424 |
(C6×D4)⋊37C22 = C3×C22.32C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):37C2^2 | 192,1427 |
(C6×D4)⋊38C22 = C3×D4⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):38C2^2 | 192,1435 |
(C6×D4)⋊39C22 = C3×C22.54C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4):39C2^2 | 192,1449 |
(C6×D4)⋊40C22 = C3×D4○D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):40C2^2 | 192,1465 |
(C6×D4)⋊41C22 = C22×D4⋊S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):41C2^2 | 192,1351 |
(C6×D4)⋊42C22 = C2×D12⋊6C22 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):42C2^2 | 192,1352 |
(C6×D4)⋊43C22 = C2×D6⋊3D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):43C2^2 | 192,1359 |
(C6×D4)⋊44C22 = C2×C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):44C2^2 | 192,1362 |
(C6×D4)⋊45C22 = C2×D4⋊D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):45C2^2 | 192,1379 |
(C6×D4)⋊46C22 = C12.C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):46C2^2 | 192,1381 |
(C6×D4)⋊47C22 = (C2×D4)⋊43D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):47C2^2 | 192,1387 |
(C6×D4)⋊48C22 = C6.1462+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):48C2^2 | 192,1389 |
(C6×D4)⋊49C22 = C22×S3×D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):49C2^2 | 192,1514 |
(C6×D4)⋊50C22 = C22×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):50C2^2 | 192,1515 |
(C6×D4)⋊51C22 = C2×D4⋊6D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):51C2^2 | 192,1516 |
(C6×D4)⋊52C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):52C2^2 | 192,1520 |
(C6×D4)⋊53C22 = C2×D4○D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):53C2^2 | 192,1521 |
(C6×D4)⋊54C22 = C6.C25 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):54C2^2 | 192,1523 |
(C6×D4)⋊55C22 = C2×C23⋊2D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):55C2^2 | 192,1358 |
(C6×D4)⋊56C22 = D4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):56C2^2 | 192,1360 |
(C6×D4)⋊57C22 = C2×C23.14D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):57C2^2 | 192,1361 |
(C6×D4)⋊58C22 = C24⋊12D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):58C2^2 | 192,1363 |
(C6×D4)⋊59C22 = C6.1452+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):59C2^2 | 192,1388 |
(C6×D4)⋊60C22 = C6×C22≀C2 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):60C2^2 | 192,1410 |
(C6×D4)⋊61C22 = C6×C4⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):61C2^2 | 192,1411 |
(C6×D4)⋊62C22 = C3×C22.19C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):62C2^2 | 192,1414 |
(C6×D4)⋊63C22 = C6×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):63C2^2 | 192,1419 |
(C6×D4)⋊64C22 = C3×D42 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):64C2^2 | 192,1434 |
(C6×D4)⋊65C22 = C2×C6×D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4):65C2^2 | 192,1458 |
(C6×D4)⋊66C22 = C6×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):66C2^2 | 192,1462 |
(C6×D4)⋊67C22 = C3×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):67C2^2 | 192,1464 |
(C6×D4)⋊68C22 = C6×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):68C2^2 | 192,1534 |
(C6×D4)⋊69C22 = C3×C2.C25 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4):69C2^2 | 192,1536 |
(C6×D4)⋊70C22 = C2×C6×C4○D4 | φ: trivial image | 96 | | (C6xD4):70C2^2 | 192,1533 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D4).1C22 = C3⋊C2≀C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).1C2^2 | 192,30 |
(C6×D4).2C22 = (C2×D4).D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).2C2^2 | 192,31 |
(C6×D4).3C22 = C23.D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).3C2^2 | 192,32 |
(C6×D4).4C22 = C23.2D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).4C2^2 | 192,33 |
(C6×D4).5C22 = C24⋊5Dic3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).5C2^2 | 192,95 |
(C6×D4).6C22 = (C22×C12)⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).6C2^2 | 192,98 |
(C6×D4).7C22 = C23⋊C4⋊5S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).7C2^2 | 192,299 |
(C6×D4).8C22 = C23⋊D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).8C2^2 | 192,300 |
(C6×D4).9C22 = C23.5D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).9C2^2 | 192,301 |
(C6×D4).10C22 = S3×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).10C2^2 | 192,302 |
(C6×D4).11C22 = S3×C4.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).11C2^2 | 192,303 |
(C6×D4).12C22 = M4(2).19D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).12C2^2 | 192,304 |
(C6×D4).13C22 = M4(2)⋊D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).13C2^2 | 192,305 |
(C6×D4).14C22 = D12⋊1D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).14C2^2 | 192,306 |
(C6×D4).15C22 = D12.2D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).15C2^2 | 192,307 |
(C6×D4).16C22 = D12.3D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8+ | (C6xD4).16C2^2 | 192,308 |
(C6×D4).17C22 = Dic3⋊4D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).17C2^2 | 192,315 |
(C6×D4).18C22 = D4.S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).18C2^2 | 192,316 |
(C6×D4).19C22 = Dic3⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).19C2^2 | 192,317 |
(C6×D4).20C22 = Dic3.D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).20C2^2 | 192,318 |
(C6×D4).21C22 = Dic3.SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).21C2^2 | 192,319 |
(C6×D4).22C22 = D4⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).22C2^2 | 192,320 |
(C6×D4).23C22 = Dic6⋊2D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).23C2^2 | 192,321 |
(C6×D4).24C22 = D4.Dic6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).24C2^2 | 192,322 |
(C6×D4).25C22 = C4⋊C4.D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).25C2^2 | 192,323 |
(C6×D4).26C22 = C12⋊Q8⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).26C2^2 | 192,324 |
(C6×D4).27C22 = D4.2Dic6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).27C2^2 | 192,325 |
(C6×D4).28C22 = Dic6.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).28C2^2 | 192,326 |
(C6×D4).29C22 = (C2×C8).200D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).29C2^2 | 192,327 |
(C6×D4).30C22 = S3×D4⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).30C2^2 | 192,328 |
(C6×D4).31C22 = C4⋊C4⋊19D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).31C2^2 | 192,329 |
(C6×D4).32C22 = D4⋊(C4×S3) | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).32C2^2 | 192,330 |
(C6×D4).33C22 = D4⋊2S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).33C2^2 | 192,331 |
(C6×D4).34C22 = D4⋊D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).34C2^2 | 192,332 |
(C6×D4).35C22 = D6.D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).35C2^2 | 192,333 |
(C6×D4).36C22 = D6⋊D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).36C2^2 | 192,334 |
(C6×D4).37C22 = D6⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).37C2^2 | 192,335 |
(C6×D4).38C22 = D6.SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).38C2^2 | 192,336 |
(C6×D4).39C22 = D6⋊SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).39C2^2 | 192,337 |
(C6×D4).40C22 = D6⋊C8⋊11C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).40C2^2 | 192,338 |
(C6×D4).41C22 = C3⋊C8⋊1D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).41C2^2 | 192,339 |
(C6×D4).42C22 = D4⋊3D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).42C2^2 | 192,340 |
(C6×D4).43C22 = C3⋊C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).43C2^2 | 192,341 |
(C6×D4).44C22 = D4.D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).44C2^2 | 192,342 |
(C6×D4).45C22 = C24⋊1C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).45C2^2 | 192,343 |
(C6×D4).46C22 = D4⋊S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).46C2^2 | 192,344 |
(C6×D4).47C22 = D12⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).47C2^2 | 192,345 |
(C6×D4).48C22 = D12.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).48C2^2 | 192,346 |
(C6×D4).49C22 = C24⋊6D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).49C2^2 | 192,591 |
(C6×D4).50C22 = (C2×C6).D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).50C2^2 | 192,592 |
(C6×D4).51C22 = C4⋊D4.S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).51C2^2 | 192,593 |
(C6×D4).52C22 = C6.Q16⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).52C2^2 | 192,594 |
(C6×D4).53C22 = D12⋊17D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).53C2^2 | 192,596 |
(C6×D4).54C22 = C3⋊C8⋊22D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).54C2^2 | 192,597 |
(C6×D4).55C22 = C4⋊D4⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).55C2^2 | 192,598 |
(C6×D4).56C22 = Dic6⋊17D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).56C2^2 | 192,599 |
(C6×D4).57C22 = C3⋊C8⋊23D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).57C2^2 | 192,600 |
(C6×D4).58C22 = C3⋊C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).58C2^2 | 192,601 |
(C6×D4).59C22 = C22⋊C4⋊D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).59C2^2 | 192,612 |
(C6×D4).60C22 = C42.61D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).60C2^2 | 192,613 |
(C6×D4).61C22 = C42.62D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).61C2^2 | 192,614 |
(C6×D4).62C22 = C42.213D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).62C2^2 | 192,615 |
(C6×D4).63C22 = D12.23D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).63C2^2 | 192,616 |
(C6×D4).64C22 = C42.64D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).64C2^2 | 192,617 |
(C6×D4).65C22 = C42.214D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).65C2^2 | 192,618 |
(C6×D4).66C22 = C42.65D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).66C2^2 | 192,619 |
(C6×D4).67C22 = C42⋊7D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).67C2^2 | 192,620 |
(C6×D4).68C22 = D12.14D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).68C2^2 | 192,621 |
(C6×D4).69C22 = C12.16D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).69C2^2 | 192,629 |
(C6×D4).70C22 = C42.72D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).70C2^2 | 192,630 |
(C6×D4).71C22 = C12⋊2D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).71C2^2 | 192,631 |
(C6×D4).72C22 = C12⋊D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).72C2^2 | 192,632 |
(C6×D4).73C22 = C42.74D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).73C2^2 | 192,633 |
(C6×D4).74C22 = Dic6⋊9D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).74C2^2 | 192,634 |
(C6×D4).75C22 = C12⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).75C2^2 | 192,635 |
(C6×D4).76C22 = Dic3×D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).76C2^2 | 192,708 |
(C6×D4).77C22 = Dic3⋊D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).77C2^2 | 192,709 |
(C6×D4).78C22 = C24⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).78C2^2 | 192,710 |
(C6×D4).79C22 = D8⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).79C2^2 | 192,711 |
(C6×D4).80C22 = (C6×D8).C2 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).80C2^2 | 192,712 |
(C6×D4).81C22 = C24⋊11D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).81C2^2 | 192,713 |
(C6×D4).82C22 = C24.22D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).82C2^2 | 192,714 |
(C6×D4).83C22 = D6⋊3D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).83C2^2 | 192,716 |
(C6×D4).84C22 = Dic6⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).84C2^2 | 192,717 |
(C6×D4).85C22 = C24⋊12D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).85C2^2 | 192,718 |
(C6×D4).86C22 = C24.23D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).86C2^2 | 192,719 |
(C6×D4).87C22 = Dic3×SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).87C2^2 | 192,720 |
(C6×D4).88C22 = Dic3⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).88C2^2 | 192,721 |
(C6×D4).89C22 = Dic3⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).89C2^2 | 192,722 |
(C6×D4).90C22 = SD16⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).90C2^2 | 192,723 |
(C6×D4).91C22 = (C3×D4).D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).91C2^2 | 192,724 |
(C6×D4).92C22 = (C3×Q8).D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).92C2^2 | 192,725 |
(C6×D4).93C22 = C24.31D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).93C2^2 | 192,726 |
(C6×D4).94C22 = C24.43D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).94C2^2 | 192,727 |
(C6×D4).95C22 = D6⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).95C2^2 | 192,728 |
(C6×D4).96C22 = D6⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).96C2^2 | 192,729 |
(C6×D4).97C22 = C24⋊14D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).97C2^2 | 192,730 |
(C6×D4).98C22 = D12⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).98C2^2 | 192,731 |
(C6×D4).99C22 = Dic6.16D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).99C2^2 | 192,732 |
(C6×D4).100C22 = C24⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).100C2^2 | 192,733 |
(C6×D4).101C22 = C24⋊15D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).101C2^2 | 192,734 |
(C6×D4).102C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).102C2^2 | 192,735 |
(C6×D4).103C22 = C24.44D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).103C2^2 | 192,736 |
(C6×D4).104C22 = M4(2).D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8+ | (C6xD4).104C2^2 | 192,758 |
(C6×D4).105C22 = M4(2).13D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).105C2^2 | 192,759 |
(C6×D4).106C22 = D12.38D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).106C2^2 | 192,760 |
(C6×D4).107C22 = 2+ 1+4⋊6S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).107C2^2 | 192,800 |
(C6×D4).108C22 = 2+ 1+4.4S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).108C2^2 | 192,801 |
(C6×D4).109C22 = C24.67D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).109C2^2 | 192,1145 |
(C6×D4).110C22 = C24.43D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).110C2^2 | 192,1146 |
(C6×D4).111C22 = C24.46D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).111C2^2 | 192,1152 |
(C6×D4).112C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).112C2^2 | 192,1153 |
(C6×D4).113C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).113C2^2 | 192,1154 |
(C6×D4).114C22 = C12⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).114C2^2 | 192,1155 |
(C6×D4).115C22 = C6.322+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).115C2^2 | 192,1156 |
(C6×D4).116C22 = Dic6⋊19D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).116C2^2 | 192,1157 |
(C6×D4).117C22 = Dic6⋊20D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).117C2^2 | 192,1158 |
(C6×D4).118C22 = C4⋊C4.178D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).118C2^2 | 192,1159 |
(C6×D4).119C22 = C6.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).119C2^2 | 192,1160 |
(C6×D4).120C22 = C6.702- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).120C2^2 | 192,1161 |
(C6×D4).121C22 = C6.712- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).121C2^2 | 192,1162 |
(C6×D4).122C22 = C6.722- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).122C2^2 | 192,1167 |
(C6×D4).123C22 = C6.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).123C2^2 | 192,1170 |
(C6×D4).124C22 = C6.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).124C2^2 | 192,1173 |
(C6×D4).125C22 = C6.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).125C2^2 | 192,1174 |
(C6×D4).126C22 = C6.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).126C2^2 | 192,1175 |
(C6×D4).127C22 = C6.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).127C2^2 | 192,1177 |
(C6×D4).128C22 = C6.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).128C2^2 | 192,1178 |
(C6×D4).129C22 = C6.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).129C2^2 | 192,1180 |
(C6×D4).130C22 = C6.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).130C2^2 | 192,1207 |
(C6×D4).131C22 = C4⋊C4.197D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).131C2^2 | 192,1208 |
(C6×D4).132C22 = C6.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).132C2^2 | 192,1209 |
(C6×D4).133C22 = C6.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).133C2^2 | 192,1210 |
(C6×D4).134C22 = S3×C22.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).134C2^2 | 192,1211 |
(C6×D4).135C22 = C6.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).135C2^2 | 192,1212 |
(C6×D4).136C22 = C6.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).136C2^2 | 192,1213 |
(C6×D4).137C22 = C6.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).137C2^2 | 192,1214 |
(C6×D4).138C22 = C4⋊C4⋊28D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).138C2^2 | 192,1215 |
(C6×D4).139C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).139C2^2 | 192,1216 |
(C6×D4).140C22 = C6.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).140C2^2 | 192,1217 |
(C6×D4).141C22 = C6.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).141C2^2 | 192,1218 |
(C6×D4).142C22 = C6.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).142C2^2 | 192,1219 |
(C6×D4).143C22 = C6.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).143C2^2 | 192,1220 |
(C6×D4).144C22 = C6.652+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).144C2^2 | 192,1221 |
(C6×D4).145C22 = C6.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).145C2^2 | 192,1222 |
(C6×D4).146C22 = C6.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).146C2^2 | 192,1223 |
(C6×D4).147C22 = C6.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).147C2^2 | 192,1224 |
(C6×D4).148C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).148C2^2 | 192,1225 |
(C6×D4).149C22 = C6.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).149C2^2 | 192,1226 |
(C6×D4).150C22 = C42.233D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).150C2^2 | 192,1227 |
(C6×D4).151C22 = C42.139D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).151C2^2 | 192,1230 |
(C6×D4).152C22 = S3×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).152C2^2 | 192,1232 |
(C6×D4).153C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).153C2^2 | 192,1233 |
(C6×D4).154C22 = C42.141D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).154C2^2 | 192,1234 |
(C6×D4).155C22 = D12⋊10D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).155C2^2 | 192,1235 |
(C6×D4).156C22 = Dic6⋊10D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).156C2^2 | 192,1236 |
(C6×D4).157C22 = C42.234D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).157C2^2 | 192,1239 |
(C6×D4).158C22 = C42.143D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).158C2^2 | 192,1240 |
(C6×D4).159C22 = C42.144D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).159C2^2 | 192,1241 |
(C6×D4).160C22 = C42.166D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).160C2^2 | 192,1272 |
(C6×D4).161C22 = C42.238D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).161C2^2 | 192,1275 |
(C6×D4).162C22 = C2×D8⋊3S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).162C2^2 | 192,1315 |
(C6×D4).163C22 = C2×S3×SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).163C2^2 | 192,1317 |
(C6×D4).164C22 = C2×Q8⋊3D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).164C2^2 | 192,1318 |
(C6×D4).165C22 = C2×D4.D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).165C2^2 | 192,1319 |
(C6×D4).166C22 = C2×Q8.7D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).166C2^2 | 192,1320 |
(C6×D4).167C22 = SD16⋊13D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).167C2^2 | 192,1321 |
(C6×D4).168C22 = D8⋊6D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).168C2^2 | 192,1334 |
(C6×D4).169C22 = D12.33C23 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).169C2^2 | 192,1395 |
(C6×D4).170C22 = C23.3D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).170C2^2 | 192,34 |
(C6×D4).171C22 = C23.4D12 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).171C2^2 | 192,35 |
(C6×D4).172C22 = C42⋊4Dic3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).172C2^2 | 192,100 |
(C6×D4).173C22 = C42⋊5Dic3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).173C2^2 | 192,104 |
(C6×D4).174C22 = C3×C2≀C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).174C2^2 | 192,157 |
(C6×D4).175C22 = C3×C23.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).175C2^2 | 192,158 |
(C6×D4).176C22 = C3×C42⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).176C2^2 | 192,159 |
(C6×D4).177C22 = C3×C42⋊3C4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).177C2^2 | 192,160 |
(C6×D4).178C22 = 2+ 1+4.5S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 8- | (C6xD4).178C2^2 | 192,802 |
(C6×D4).179C22 = 2+ 1+4⋊7S3 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 8+ | (C6xD4).179C2^2 | 192,803 |
(C6×D4).180C22 = C3×Q8⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).180C2^2 | 192,881 |
(C6×D4).181C22 = C3×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).181C2^2 | 192,887 |
(C6×D4).182C22 = C3×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).182C2^2 | 192,888 |
(C6×D4).183C22 = C3×C2≀C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).183C2^2 | 192,890 |
(C6×D4).184C22 = C3×C23.7D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).184C2^2 | 192,891 |
(C6×D4).185C22 = C3×C4⋊D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).185C2^2 | 192,892 |
(C6×D4).186C22 = C3×C4⋊SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).186C2^2 | 192,893 |
(C6×D4).187C22 = C3×D4.2D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).187C2^2 | 192,896 |
(C6×D4).188C22 = C3×Q8.D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).188C2^2 | 192,897 |
(C6×D4).189C22 = C3×C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).189C2^2 | 192,898 |
(C6×D4).190C22 = C3×C8⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).190C2^2 | 192,899 |
(C6×D4).191C22 = C3×C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).191C2^2 | 192,901 |
(C6×D4).192C22 = C3×C8⋊2D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).192C2^2 | 192,902 |
(C6×D4).193C22 = C3×D4.3D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).193C2^2 | 192,904 |
(C6×D4).194C22 = C3×D4.4D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).194C2^2 | 192,905 |
(C6×D4).195C22 = C3×C22.D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).195C2^2 | 192,913 |
(C6×D4).196C22 = C3×C23.46D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).196C2^2 | 192,914 |
(C6×D4).197C22 = C3×C23.19D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).197C2^2 | 192,915 |
(C6×D4).198C22 = C3×C4.4D8 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).198C2^2 | 192,919 |
(C6×D4).199C22 = C3×C42.78C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).199C2^2 | 192,921 |
(C6×D4).200C22 = C3×C42.28C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).200C2^2 | 192,922 |
(C6×D4).201C22 = C3×C42.29C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).201C2^2 | 192,923 |
(C6×D4).202C22 = C3×C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).202C2^2 | 192,925 |
(C6×D4).203C22 = C3×C8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).203C2^2 | 192,926 |
(C6×D4).204C22 = C3×C8.12D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).204C2^2 | 192,928 |
(C6×D4).205C22 = C3×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).205C2^2 | 192,929 |
(C6×D4).206C22 = C3×C8.2D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).206C2^2 | 192,930 |
(C6×D4).207C22 = C42.137D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).207C2^2 | 192,1228 |
(C6×D4).208C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).208C2^2 | 192,1229 |
(C6×D4).209C22 = C42.140D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).209C2^2 | 192,1231 |
(C6×D4).210C22 = C42⋊22D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).210C2^2 | 192,1237 |
(C6×D4).211C22 = C42⋊23D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).211C2^2 | 192,1238 |
(C6×D4).212C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).212C2^2 | 192,1242 |
(C6×D4).213C22 = C42.145D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).213C2^2 | 192,1243 |
(C6×D4).214C22 = Dic6⋊11D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).214C2^2 | 192,1277 |
(C6×D4).215C22 = C42.168D6 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).215C2^2 | 192,1278 |
(C6×D4).216C22 = C3×C22.31C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).216C2^2 | 192,1426 |
(C6×D4).217C22 = C3×C22.33C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).217C2^2 | 192,1428 |
(C6×D4).218C22 = C3×C22.34C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).218C2^2 | 192,1429 |
(C6×D4).219C22 = C3×C22.36C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).219C2^2 | 192,1431 |
(C6×D4).220C22 = C3×Q8⋊6D4 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).220C2^2 | 192,1439 |
(C6×D4).221C22 = C3×C22.47C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).221C2^2 | 192,1442 |
(C6×D4).222C22 = C3×C22.49C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).222C2^2 | 192,1444 |
(C6×D4).223C22 = C3×C24⋊C22 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | | (C6xD4).223C2^2 | 192,1450 |
(C6×D4).224C22 = C3×C22.56C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).224C2^2 | 192,1451 |
(C6×D4).225C22 = C3×C22.57C24 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 96 | | (C6xD4).225C2^2 | 192,1452 |
(C6×D4).226C22 = C3×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).226C2^2 | 192,1466 |
(C6×D4).227C22 = C12.50D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).227C2^2 | 192,566 |
(C6×D4).228C22 = C12.38SD16 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).228C2^2 | 192,567 |
(C6×D4).229C22 = D4.3Dic6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).229C2^2 | 192,568 |
(C6×D4).230C22 = C4×D4⋊S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).230C2^2 | 192,572 |
(C6×D4).231C22 = C42.48D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).231C2^2 | 192,573 |
(C6×D4).232C22 = C12⋊7D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).232C2^2 | 192,574 |
(C6×D4).233C22 = D4.1D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).233C2^2 | 192,575 |
(C6×D4).234C22 = C4×D4.S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).234C2^2 | 192,576 |
(C6×D4).235C22 = C42.51D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).235C2^2 | 192,577 |
(C6×D4).236C22 = D4.2D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).236C2^2 | 192,578 |
(C6×D4).237C22 = C2×D4⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).237C2^2 | 192,773 |
(C6×D4).238C22 = (C6×D4)⋊6C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).238C2^2 | 192,774 |
(C6×D4).239C22 = C2×C12.D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).239C2^2 | 192,775 |
(C6×D4).240C22 = (C2×C6)⋊8D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).240C2^2 | 192,776 |
(C6×D4).241C22 = (C3×D4).31D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).241C2^2 | 192,777 |
(C6×D4).242C22 = C4○D4⋊3Dic3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).242C2^2 | 192,791 |
(C6×D4).243C22 = C4○D4⋊4Dic3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).243C2^2 | 192,792 |
(C6×D4).244C22 = (C6×D4).16C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).244C2^2 | 192,796 |
(C6×D4).245C22 = (C3×D4)⋊14D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).245C2^2 | 192,797 |
(C6×D4).246C22 = (C3×D4).32D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).246C2^2 | 192,798 |
(C6×D4).247C22 = C4×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).247C2^2 | 192,1095 |
(C6×D4).248C22 = D4×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).248C2^2 | 192,1096 |
(C6×D4).249C22 = D4⋊5Dic6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).249C2^2 | 192,1098 |
(C6×D4).250C22 = C42.106D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).250C2^2 | 192,1101 |
(C6×D4).251C22 = D4⋊6Dic6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).251C2^2 | 192,1102 |
(C6×D4).252C22 = C4×S3×D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).252C2^2 | 192,1103 |
(C6×D4).253C22 = C42⋊13D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).253C2^2 | 192,1104 |
(C6×D4).254C22 = C42.108D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).254C2^2 | 192,1105 |
(C6×D4).255C22 = C42.228D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).255C2^2 | 192,1107 |
(C6×D4).256C22 = D4×D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).256C2^2 | 192,1108 |
(C6×D4).257C22 = D12⋊24D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).257C2^2 | 192,1110 |
(C6×D4).258C22 = Dic6⋊24D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).258C2^2 | 192,1112 |
(C6×D4).259C22 = D4⋊5D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).259C2^2 | 192,1113 |
(C6×D4).260C22 = D4⋊6D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).260C2^2 | 192,1114 |
(C6×D4).261C22 = C42.229D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).261C2^2 | 192,1116 |
(C6×D4).262C22 = C42.113D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).262C2^2 | 192,1117 |
(C6×D4).263C22 = C42.114D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).263C2^2 | 192,1118 |
(C6×D4).264C22 = C42.115D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).264C2^2 | 192,1120 |
(C6×D4).265C22 = C42.116D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).265C2^2 | 192,1121 |
(C6×D4).266C22 = C42.117D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).266C2^2 | 192,1122 |
(C6×D4).267C22 = C22×D4.S3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).267C2^2 | 192,1353 |
(C6×D4).268C22 = C2×D4×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).268C2^2 | 192,1354 |
(C6×D4).269C22 = C2×C23.12D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).269C2^2 | 192,1356 |
(C6×D4).270C22 = C24.49D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).270C2^2 | 192,1357 |
(C6×D4).271C22 = C24.52D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).271C2^2 | 192,1364 |
(C6×D4).272C22 = C2×Q8.13D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).272C2^2 | 192,1380 |
(C6×D4).273C22 = C2×Q8.14D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).273C2^2 | 192,1382 |
(C6×D4).274C22 = Dic3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).274C2^2 | 192,1385 |
(C6×D4).275C22 = C6.1442+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).275C2^2 | 192,1386 |
(C6×D4).276C22 = C6.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).276C2^2 | 192,1390 |
(C6×D4).277C22 = (C2×C12)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).277C2^2 | 192,1391 |
(C6×D4).278C22 = C6.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).278C2^2 | 192,1393 |
(C6×D4).279C22 = C2×Q8○D12 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).279C2^2 | 192,1522 |
(C6×D4).280C22 = C2×C23.7D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).280C2^2 | 192,778 |
(C6×D4).281C22 = (C6×D4)⋊10C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).281C2^2 | 192,799 |
(C6×D4).282C22 = C6×C23⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).282C2^2 | 192,842 |
(C6×D4).283C22 = C3×C23.C23 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).283C2^2 | 192,843 |
(C6×D4).284C22 = C6×C4.D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).284C2^2 | 192,844 |
(C6×D4).285C22 = C3×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | 4 | (C6xD4).285C2^2 | 192,846 |
(C6×D4).286C22 = C6×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).286C2^2 | 192,847 |
(C6×D4).287C22 = C3×C23.24D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).287C2^2 | 192,849 |
(C6×D4).288C22 = C3×C23.36D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).288C2^2 | 192,850 |
(C6×D4).289C22 = C3×C23.37D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).289C2^2 | 192,851 |
(C6×D4).290C22 = C12×D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).290C2^2 | 192,870 |
(C6×D4).291C22 = C12×SD16 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).291C2^2 | 192,871 |
(C6×D4).292C22 = C3×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).292C2^2 | 192,873 |
(C6×D4).293C22 = C3×D8⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).293C2^2 | 192,875 |
(C6×D4).294C22 = C3×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).294C2^2 | 192,882 |
(C6×D4).295C22 = C3×C22⋊SD16 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).295C2^2 | 192,883 |
(C6×D4).296C22 = C3×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).296C2^2 | 192,885 |
(C6×D4).297C22 = C3×D4.D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).297C2^2 | 192,894 |
(C6×D4).298C22 = C3×D4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).298C2^2 | 192,907 |
(C6×D4).299C22 = C3×D4⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).299C2^2 | 192,909 |
(C6×D4).300C22 = C3×D4.Q8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).300C2^2 | 192,911 |
(C6×D4).301C22 = C42.102D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).301C2^2 | 192,1097 |
(C6×D4).302C22 = C42.104D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).302C2^2 | 192,1099 |
(C6×D4).303C22 = C42.105D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).303C2^2 | 192,1100 |
(C6×D4).304C22 = C42⋊14D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).304C2^2 | 192,1106 |
(C6×D4).305C22 = D12⋊23D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).305C2^2 | 192,1109 |
(C6×D4).306C22 = Dic6⋊23D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).306C2^2 | 192,1111 |
(C6×D4).307C22 = C42⋊18D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).307C2^2 | 192,1115 |
(C6×D4).308C22 = C42⋊19D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).308C2^2 | 192,1119 |
(C6×D4).309C22 = C42.118D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).309C2^2 | 192,1123 |
(C6×D4).310C22 = C42.119D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).310C2^2 | 192,1124 |
(C6×D4).311C22 = C2×C23.23D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).311C2^2 | 192,1355 |
(C6×D4).312C22 = C24.53D6 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).312C2^2 | 192,1365 |
(C6×D4).313C22 = C6.1042- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).313C2^2 | 192,1383 |
(C6×D4).314C22 = C6.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).314C2^2 | 192,1384 |
(C6×D4).315C22 = C6.1082- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).315C2^2 | 192,1392 |
(C6×D4).316C22 = C6×C22.D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).316C2^2 | 192,1413 |
(C6×D4).317C22 = C6×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).317C2^2 | 192,1415 |
(C6×D4).318C22 = C3×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).318C2^2 | 192,1418 |
(C6×D4).319C22 = C3×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).319C2^2 | 192,1421 |
(C6×D4).320C22 = C3×C23.38C23 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).320C2^2 | 192,1425 |
(C6×D4).321C22 = C3×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).321C2^2 | 192,1436 |
(C6×D4).322C22 = C3×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).322C2^2 | 192,1437 |
(C6×D4).323C22 = C3×C22.45C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).323C2^2 | 192,1440 |
(C6×D4).324C22 = C3×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).324C2^2 | 192,1441 |
(C6×D4).325C22 = C3×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).325C2^2 | 192,1445 |
(C6×D4).326C22 = C3×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).326C2^2 | 192,1448 |
(C6×D4).327C22 = C2×C6×SD16 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).327C2^2 | 192,1459 |
(C6×D4).328C22 = C6×C4○D8 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).328C2^2 | 192,1461 |
(C6×D4).329C22 = C6×C8.C22 | φ: C22/C2 → C2 ⊆ Out C6×D4 | 96 | | (C6xD4).329C2^2 | 192,1463 |
(C6×D4).330C22 = D4×C2×C12 | φ: trivial image | 96 | | (C6xD4).330C2^2 | 192,1404 |
(C6×D4).331C22 = C12×C4○D4 | φ: trivial image | 96 | | (C6xD4).331C2^2 | 192,1406 |
(C6×D4).332C22 = C3×C22.11C24 | φ: trivial image | 48 | | (C6xD4).332C2^2 | 192,1407 |
(C6×D4).333C22 = C3×C23.33C23 | φ: trivial image | 96 | | (C6xD4).333C2^2 | 192,1409 |
(C6×D4).334C22 = C3×D4×Q8 | φ: trivial image | 96 | | (C6xD4).334C2^2 | 192,1438 |
(C6×D4).335C22 = C3×D4⋊3Q8 | φ: trivial image | 96 | | (C6xD4).335C2^2 | 192,1443 |
(C6×D4).336C22 = C6×2- 1+4 | φ: trivial image | 96 | | (C6xD4).336C2^2 | 192,1535 |